This project illustrates the ideal gas law by producing a surface plot showing the volume as the pressure and temperature each vary through a range of values. The ideal gas law is given by:

$$PV = nRT$$

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas in liters (L), n is the number of molecules of the gas in units of moles (mol), R is the universal gas constant (8.314 L*kPa/mol*K), and T is the absolute temperature in kelvins (K).

Assuming a sample of an ideal gas contains 1 mol of molecules at a temperature of 273 K, this script varies its pressure from 1 to 101 kPa in steps of 2 kPa and varies its temperature from 270 to 320 K in 50 increments. The script calculates all of the possible values showing the relationship in a surface plot.

An ideal gas is one in which all collisions between molecules are perfectly elastic. Such a gas can be characterized by three quantities: absolute pressure (P), volume (V), and absolute temperature (T). The relationship among these quantities in an ideal gas is known as the ideal gas law: $PV = nRT$. Assuming that a sample of an ideal gas contains 1 mol of molecules at a temperature of 273 K, this script varies its pressure from 1 to 101 kPa in steps of 2 kPa and varies its temperature from 270 to 320 K in 50 increments. The script calculates all of the possible values and shows the relationship in a surface plot.